Новости
Автоматизация
ТВЧ
Производство
3D
Внестудийное производство
Звук
Хранение
Инфраструктура
Кино
Спутник
Конференции и семинары
 
Акции
Учеба
Видео
Блоги
Вы здесь: Главная >> Хранение >> Облачные бизнес-модели: IBM запускает машинное обучение в частном облаке
Облачные бизнес-модели: IBM запускает машинное обучение в частном облаке
20.03.2017, Broadcast
Облачные бизнес-модели: IBM запускает машинное обучение в частном облаке

Компания IBM представила IBM Machine Learning, первую когнитивную платформу для непрерывного создания, обучения и развертывания большого объема аналитических моделей в частном облаке, которое лежит в основе обширных корпоративных хранилищ данных. Даже используя самые современные методы, специалисты по обработке данных, которых сейчас не хватает на рынке, могут потратить дни или недели на пошаговую разработку, тестирование и модификацию всего одной аналитической модели.

Об этом сообщается в пресс-релизе компании.

IBM взяла за основу технологию машинного обучения платформы IBM Watson и прежде всего сделает ее доступной там, где размещена большая часть корпоративных данных заказчиков: на мейнфреймах z Systems, операционных ядрах глобальных организаций. С их помощью банки, предприятия розничной торговли, страховые, транспортные и государственные компании ежедневно проводят миллиарды транзакций.

IBM Machine Learning позволяет специалистам по обработке данных автоматизировать создание, обучение и развертывание операционных аналитических моделей, поддерживающих:

· любой язык (например, Scala, Java, Python);

· любой популярный фреймворк для машинного обучения (например, Apache SparkML, TensorFlow, H2O);

· любой тип данных по транзакциям;

· перемещение данных в облако без дополнительных расходов, задержек или рисков.

Cognitive Automation for Data Scientists, разработанная IBM Research, помогает специалистам по обработке информации выбирать подходящий алгоритм для анализа путем сравнения доступных алгоритмов с имеющимися данными и их ранжирования. Таким образом, система находит наилучшее соответствие для текущих потребностей. Сервис также учитывает различные обстоятельства, например, необходимый функционал алгоритма и скорость получения результатов.

Заказчики уже начали понимать ценность IBM Machine Learning for z/OS. В частности, Argus Health (группа DST) использует эту технологию, чтобы помочь плательщикам и поставщикам справляться с растущим количеством сложных задач и оптимизировать результаты их решения. Argus тестирует различные сценарии применения IBM Machine Learning for z/OS для разработки, обучения и развертывания приложений, которые позволят лучше управлять расходами аптек. С помощью этой технологии Argus надеется продолжить работу над построением уникальных решений, которые будут обеспечивать инсайтами на базе углубленной аналитики участников различных сценариев. В том числе будут учитываться такие места оказания медицинской помощи, как кабинет врача и аптека.

Мейнфрейм IBM z Systems способен обрабатывать до 2,5 млрд транзакций в день – это эквивалент примерно 100 «киберпонедельникам». IBM Machine Learning for z/OS помогает извлечь наибольшую ценность из данных z Systems, не перемещая при этом информацию из системы для анализа. Это также позволяет минимизировать задержки, затраты на проведение транзакций и риски безопасности, связанные с традиционными ETL-процессами. Система постоянно анализирует данные, модели для предоставления улучшенных прогнозов, инструменты оптимизации поведенческих моделей и ускорения времени получения инсайтов.

IBM Machine Learning сначала будет доступна на z/OS, а затем появится на других платформах, включая IBM POWER Systems. Развертывая IBM Machine Learning на POWER Systems, заказчики смогут более эффективно использовать машинное обучение, обеспечивая высокую производительность и рентабельность вместе с полным управлением данными.

Узнайте больше о IBM Machine Learning на сайте компании.

Более подробную информацию о портфеле решений IBM z Systems можно найти на сайте компании.

Теги:     IBM    Machine Learning    IBM Watson
 
Поделиться материалом:
Дополнительные действия:   Версия для печати
Самое читаемое:
Комментарии: Добавить комментарий:
Статус:
Код с картинки:
Имя:
Комментарии: